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DAMAGE EVOLUTION AND HETEROGENEITY OF
MATERIALS: MODEL BASED ON FUZZY SET THEORY
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Abstract-A mathematical model of damage evolution in heterogeneous materials is developed using the
methods of the theory of fuzzy sets. The fuzzy concept of damage is formulated and some applications of this
concept are considered. The influence of the material heterogeneity on the damage as well as the
heterogenization of the material due to the damage evolution are studied. On the basis of the fuzzy concept of
damage, it is shown that the greater the heterogeneity of material, the closer is the material to failure under
loading. 1997 Elsevier Science Ltd
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NOMENCLATURE

statistical entropy of the distribution of local strength of
heterogeneous material
crack length
amount of components of different strength in the material
time to failure of a body with microcrack density R

membership function of a heterogeneous material into a fuzzy set of������������������ ������������ �!"���
strength of a homogeneous material
strength of i-th constituent of a material
local stress
critical level of the local stress
membership function of a body into a fuzzy set of the behavior of
destructed material
membership function of a body into a complement of the fuzzy set of
destructed material
conditional membership function of a material (or its constituent) with
a given strength  into a fuzzy set of the behavior of destroyed
materials.

1. INTRODUCTION
INITIALLY. fracture was considered as only a stepwise change of material state-from integrity to the
loss of integrity. Then, a number of intermediate states were discovered: first, even a body with large
cracks is not always a failed body, the lifetime of a cracked body can be rather long if a crack is less
than critical, or if a crack has been arrested. Microcracks in many materials can close after unloading.
The initial stages of destruction, namely the initiation and growth of microcracks, can last rather a long
time, and differences between states of material at each stage of destruction are rather small. So, the
transition from integrity to a failed state is rather smooth: plastic deformation, strain localization,
damage initiation, damage evolution, subcritical crack growth, crack arrest, etc. The microfracture
appears gradually as well: dislocations movement, local elastic and plastic deformation, accommodation
of dislocations, time dependent nucleation of flaw due to the thermal fluctuations[I]. The physical
smoothness of the transition from non-failed to failed state of a material is difficult to take into account
in the numerical modeling of damage and fracture: although a number of damage models have been
incorporated in numerical codes and are used to describe the crack initiation and evolution in different
materials [2], the conditions of local failure are often taken arbitrarily (for example, the critical level of
the damage parameter by Rice and Tracey was taken as 0.2 [3], or the critical level of Lemaitre’s
damage parameter was taken as 0.8 [4], without any strong justifications). Therefore, the smoothness of
the transition from non-failed to failed state of a material should
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be modeled in such a way that this model may serve as a basis for the determination of critical
conditions of local failure (critical damage factor) and be implemented in the numerical codes which
describe the deformation and damage evolution in materials.

Consider the physical properties of a complex material. Usually, the properties of a composite are
varied between the properties of all its constituents. Nan [5] has shown that a property of a complex
material can present a sum, a product or another combination of properties of its components. The
hardness of granite depends on the place and direction of indentation, and on the density of quartz grains
in the site of indentation, and can vary in the range of 40% [6]. The uncertainty in local properties of a
complex material is determined by the uncertainty of the spatial distribution of its components as well as
by the uncertainty of the behavior of a complex system which surely differs from that of the sum of its
elements. Thus, the properties of complex materials contain uncertainty.

In order to take into account both the uncertainty and the smoothness of the destruction process as
such and the uncertainty of properties and behavior of real materials, it is suggested here to use the
theory of fuzzy sets to model the destruction of materials [7, 8]. The transition from non-failed to failed
states of a body can be considered as a transition from a fuzzy set of failed state to the complement of
this set.

2. CONCEPT OF FUZZY SET IN MODELLING OF STRENGTH OF MATERIAL AND
SAFETY OF CONSTRUCTION

The theory of fuzzy sets and fuzzy logic presents methods to describe natural phenomena and their
analysis by taking into account the unavoidable uncertainty of the phenomena and our limited ability to
describe the phenomena quantitatively. This theory is used in order to convert linguistic variables or
other non-precise or subjective appraisals into quantitative and objective data.

Consider some works in which the fuzzy set concept is used in order to study strength, re- liability
and other characteristics of materials and products.

Yao [9] considered the problem of damage assessment and suggested using the fuzzy set approach to
relate the linguistic and qualitative assessment of damage in structures.

Brown [10] has developed a safety measure, which includes both objective (probability of failure)
and subjective (characterized by a membership function, determined with the use of "linguistic wisdom")
information about the considered system.

Shiraishi and Furuta [11] analyzed the structural safety taking into account the subjective assessment
of engineers with the use of fuzzy probabilities. They expressed a failure event through fuzzy sets, and
determined the probability of failure in this case.

Blockley and Baldwin [12] have considered an applicability of the fuzzy logic models in computer
knowledge bases. One can see that the probabilistic or statistical methods of analysis are combined with
the fuzzy sets in some works.

Klisinski [13] has introduced a fuzzy yield surface which should divide elastic and plastic regions of
material behavior. The fuzzy yield surface allows us to model smooth transitions between elastic and
plastic states, and to describe the hysteresis loops in a simpler manner than with the use of the two yield
surfaces. The cyclic plasticity of materials with and without memory and with and without kinematic and
isotropic hardening is modeled with the use of the fuzzy yield surface.

Thus, one can see that the theory of fuzzy sets and fuzzy logic can be efficiently used in order to take
into account both uncertainty which is inherent in the natural phenomena as such (here, the uncertainty of
yield condition) and that which is caused by a lack of information.

3. FUZZY CONDITION OF FAILURE

In order to describe the process of fracture as not a sudden but rather a smooth transition from one
state to another, it is suggested here to introduce a fuzzy definition of the failure condition.

Suppose now that the region of elastic behavior of a body (for simplicity, the loaded body is
supposed to be elasto-brittle), which is limited by the condition of local fracture, is a fuzzy
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Fig. I. Transition of material from non-failed to failed state: ordinary (a) and fuzzy (b) conditions.

set. This means that a real number Y’ on the interval [0;1] can be assigned to each stress level. If the body
behaves as a monolithic heterogeneous elastic one, this value is equal to 1. The membership function Y’
for this fuzzy set represents the membership degree of the loaded body into the set of behaviors of elastic
material. This function Y’ is supposed to be continuous [7]. The complement of this set (with a
membership function Y = 1 -Y’) presents the fuzzy set of behavior of destructed material.

This function characterizes the degree of closeness of the body to failure. Clearly, when the
microcrack density in the material increases, the value Y’ varies from 1 to 0. (By contrast to the
traditional notation in the theory of fuzzy sets, we shall write simply Y, without the symbols of the fuzzy
set and elements, the membership degree of which is characterized.) The value Y characterizes  the
behavior or state of material (failure, or ability to be elastically deformed) and not physical properties of
the material.

The fuzzy condition of the transition of material from non-failed to failed state is shown
schematically in Fig. 1.

One can note here that the damage parameter in the continuum damage mechanics is usually
assigned two meanings: first, microcrack density, and second, the closeness of the material to failure. The
conditions of failure are usually formulated as an equality between the damage parameter and some
critical value (see for example refs[14, 15]).

Kachanov [16] has formulated two meanings of the damage parameter as follows: "reduction of the
effective elastic stiffness" and "the extent of progression towards the final fracture". The latter meaning
evidently corresponds to this membership function, which we have just defined. The damage parameter
defined in such a way is related to the microcrack density or the deterioration of elastic stiffness in a way
not so simple as was supposed, for instance, by Lemaitre[14]. That is why we shall refer hereafter to the
"membership function of material state or behavior into the fuzzy set of failed state of material", as a
"fuzzy damage parameter".

4. HETEROGENEITY OF MATERIAL AND FUZZY DAMAGE PARAMETER
The fuzziness of damage and fracture is caused among other .factors by the heterogeneity of the

material. The local properties of materials are randomly distributed, and any information about them is
uncertain.
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Consider the properties (in our case strength) of heterogeneous materials. A homogeneous body#%$�&('*)+&-,�.�/10�&-' 243�56,7.98�:<;>=6?�.�26@�:9/*A1.%@956/�)�$�B6.9,C.9BD:9)E:9/D.�?�.<;>.�/1&F5637&('�.G)H.�&F563I;>:�&�.�,�$-:9?()J513I0�$(K�.9/D)�&�,C.9/60�&�'
with membership degree 1. Yet, if one considers real materials, this set presents a fuzzy set: the strength
of material depends on size, local point, conditions of loading, dislocation distribution and movement,
etc.; it turns out that the strength of the body is an averaged strength, and this membership degree is less
than I. The greater the difference between local properties of material and its total strength, the lower the
membership degree of this material into the fuzzy set of materials with this strength.

If a material consists of several components or regions with different properties, the strengths inL9M�N9OPM�Q�L
1R 2SDT�T�T S j, the membership degrees of the material into the fuzzy set of materials withUHV-W�X�Y1Z�V-[

1\ 2]G^9_-`badc-egf1^�_(hi^�^�jlknm9j�oqp6adrFs1]Gs6j�^t`�m9juhiv�c-_-^P_(w�^PxD^<xDf1^9vCe�w�c�y{z�|1j�`�_-c-s1jn}%~ i), which
characterizes the role of each component in the behavior of the material. It can be stated that the function
characterizes the closeness of behavior of the material to the homogeneous body, which consists only of
this component.�I���%�������<���-�1�D�%�

i) describes the heterogeneity of the material, and is analogous to the function Y to
some extent: the function Y characterizes the closeness of the state of the body to failure, and the���6���9�-���b���%�

i) characterizes the closeness of the behavior of the heterogeneous material to that of the
homogeneous one with given properties.

The heterogeneity of material can be characterized also in a more traditional way, i.e. through the
statistical entropy of deviations of local properties of the material from averaged properties. This value
is related to the membership function A as follows [7]:

Hh = (1/Nc) � j j � j ����� j � j) ,

where Nc denotes the amount of components of different strength in the material, j = 1, 2, ..., Nc, Hh the�H�-�9�-�-�H�(�� ��9¡4¢9£1��¤C¥1¦b§¨¥1©ª�(«�¢i¡�¥6 9�9¡4¦6¤�¥6¦1¢9¤C�-��¢���¥6©��-«�¢%¬D�9�-¢9¤C����¡�
j ® j ¯�°²±%³ j)/[ ́ j µG¶ j)].

Consider the interrelation between the function A and the fuzzy damage parameter. The function Y
depends on the strength of material and applied stress (which is taken here to be constant); so, the
membership function Y is a conditional one and depends on the strength of material, the variability of
which is characterized by the function A. It means that the fuzzy damage parameter can be determined
with the use of the formula of conditional membership function[7]:

Y = 1- MAX ·¹¸Cº¼»�½¿¾ÁÀ4Â�ÃG¸ÅÄ j ÆCÇ6È%É j )]),
(2)

Ê%Ë1Ì�Í�ÌiÎGÏÅÐ
j) is the conditional fuzzy damage parameter for the given strength of material.

To show how to make calculations with this formula, consider the following simple case. The
loaded material consists of three constituents. The membership degrees A of each of them are asÑ�Ò6Ó�Ó-ÒbÔiÕ×ÖÙØ%Ú

1ÛCÜÞÝªß à6áªâ%ã 2äCåæåÞç�è�éëê�ì%í 3)= 0.6. The fuzzy damage parameters for the materials of eachî9ï6ð�ñHò-ó-ò-ô1õ�ð�ò�öCô1ð�÷6õ9øJù�ó-ú�õ<ð²û-ï1ü�÷1ýJü�ø�õDõ9þ6ô�ü9û7ò-ï ÿGö �
1������� 	�
����� 2������������������� 3) = 0.7. Substituting these

values into eq. (2), one can obtain Y = 0.3.
Equation (2) relates the characteristic of variability of material properties and the damaged state in

the material.
Yet, not only the strength of the material int1uences the closeness of the material to failure under a

given load, but also the degree of destruction of the material int1uences its strength. The growth of
damage leads to changes in strength of the material[14]. This dependence can be written as follows:

 �! #" 0, Y),                                                                      (3)

$&%�')(#'+*-,/.0.21435'+*#6�798):/,;1479<
0 is the initial strength of the material at a point. For example, if one uses the=2>;?�@BA;CEDBF�G9AIH9@BJ;DKC9LBD+M�?�A/C�LBA;M�J;DBN4O+D+P9@KH9D&QSR

0T�U�V�W 0/(1 -R).
For this case (i.e. when the local strength of material is changed due to the damage formation), theXSY�Z9[B\;];^�Z!_+`

i) depends on the damage distribution. Since this function characterizes variations of local
strength from the average strength of the body, it can be taken as a member- ship function of the
complement of the fuzzy set of the failed state of the material. One can write
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Y=

a&b
i cedgf�h�i�jlk i)
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(4)

m&n�o)p#o
i is the local strength at the i-th point.

Equations (2) and (4) describe the interrelations between the fuzzy damage parameter and the
variability of local material properties from averaged values.

5. FATIGUE DAMAGE GROWTH IN HOMOGENEOUS AND HETEROGENEOUS
MATERIALS

Consider now the damage evolution in cyclic loading. When the damaged state of materials is
characterized by the density of microcracks, these values are simply summarized in repeated loadings.
Yet, here the damaged state of material is characterized by the membership function of the material into
the fuzzy set, and this value should be determined in a more complex way.

Let us take a material which consists of several components (minerals, filler and matrix, etc.). The
variation of the properties of components from averaged values are described by the function A. Under
loading, each of the components becomes damaged and approaches failure to some extent; the degree of
closeness of the component to failure is characterized by the function 1 (which depends on both applied
load and strength of the component). The damage growth in each of the components also causes further
variations of the strength of the component (as described by eq. (4)). This leads to a change in the
function A; this membership function is no longer determined only by the initial properties of the
material, but also by the weakening of the material due to damage growth. The function A becomes a
membership function of a sum of two fuzzy sets, which characterize the variability of local strength of
the material from the averaged value caused by initial heterogeneity of the material and damage-
induced heterogeneity. Such a membership function is determined as a membership function of a sum of
two (or several, in the case of repeated loadings) fuzzy sets:

A = 1 -[(1-A l) + (1 -A2) -(1 –A1)(1 -A2)]

= A IA2 = A l(l -Y),                                                                    (5)

where A1 and A2 are values of the function A, caused by initial heterogeneity of the material and
heterogeneity induced by the damage evolution, respectively. In deriving eq. (5) it was taken into account
that not the degrees of closeness of the material component properties to the averaged material properties
are summarized, but the complements of these fuzzy sets.

In the next loading, the membership function Y depends on the degree of material destruction
achieved in the previous loading, as can be seen from formulas (2) and (5).

Equations (2) and (5) describe the approach of the material to failure at repeated loadings. Let us
study the damage growth in cyclic loading numerically. Two materials, a homogeneous and a
heterogeneous one, are taken. The first one is supposed to consist of 20 components, but the function A
for one of the components is equal to 0.999 (this means that the material is practically homogeneous).
The fuzzy damage parameter Y for the main component of the material under a given load is taken to be
constant and equal to 0.001.

The second material consists of 20 different components again, but the function A for one of these
components is 0.7 and for all others 0.05 (this means that the material is relatively heterogeneous). The
main component of the material is taken to be the strongest: its damage parameter Y is equal to 0.001.qsr�tvu)w/wxr�y;z9{Btv|)r�}5~�r��9{)��y;�������;��{B���9uBwsy;r���� �����B��z�{�|Bz9u)���9{)���;���&�

i) due to the damage accumulation were
calculated with use of the formulas (4) and (5).

Variations of the fuzzy damage parameter for each time step were calculated by formulas (2) and (5).
Figure 2 shows the fuzzy damage parameter vs. number of loadings for the first and second materials

(curves 1 and 2, respectively).
One can see that both curves shown in Fig. 2 look similar, but the damage growth proceeds much

more quickly in the heterogeneous material. The fuzzy damage parameter reaches the value 0.6 after nine
to ten loadings for the homogeneous material, and after four to five loadings for the heterogeneous
material. So, the time to failure in cyclic loading of a heterogeneous
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Fig. 2. Fuzzy damage parameter plotted vs. number of loadings for homogeneous (I) and heterogeneous
(2) materials.

material is twice as much as that for a homogeneous material. The proportion depends on the
degree of heterogeneity of course.

Both curves shown in Fig. 2 have an S shape. Each curve consists of three parts: first, the damage
parameter grows almost linearly with the number of loadings, but the rate of growth is rather small;
second, the rate of growth of the damage parameter becomes sufficiently greater; and third, the rate of
damage growth decreases and approaches zero when the damage parameter approaches one. The
transition from first to second stage occurs when Y ~ 0.1 for both materials; the transition from second
to third stage occurs at Y about 0.85, independent of the material heterogeneity as well. The first stage
of damage evolution corresponds to the independent formation of microcracks in the material. This
stage is finished when the microcracks coalesce and form cracks, which begin to grow autocatalytically
[17, 18]. Then, the cracks grow with increasing velocity, and correspond to the second stage, which is
finished by dividing of the body into parts. The third stage corresponds to the destruction of a partially
failed body, up to crushing. The fact that the damage growth rate at the third stage is sufficiently less
than at the first or second stage is confirmed by the experimental observation that the energy
consumption in crushing of a material is much more than at the formation of initial cracks [19]. The
energy needed for crack formation due to the damage coalescence is greater than the specific energy of
crack growth as well; this theoretical result obtained on the basis of the fractal model of fracture
presented by Mishnaevsky [18] corresponds to our conclusion that the damage growth rate at the initial
stage of destruction is much less than at the second stage.

6. HETEROGENIZATION OF THE MATERIAL DUE TO THE DAMAGE
ACCUMULATION

Consider now interrelations between the degree of heterogeneity of a material and its close-
ness to failure.

Let us take 100 different materials with different distributions of properties and study the effect of
the heterogeneity on the fuzzy damage parameter. All materials are loaded with the same force. Each of�;�9�)���B�4�9�2�I�2�;���4���� ��B���¢¡����9�K�9�;�¤£&�I�/��¥��I���S�)¦#�)�9�s¡�¦���¡��B¦��/�;�B��§��2�;¦��B�9¨��/�

i). The components of the materials©Bª�«�¬B�©Bª�©B¬B®;«Bª�¯;°B«B±³²�´!®;9«¶µ�©B·I¸9«B¹�º�»¤¼&½
i) (i.e. the degree of variation of the strength of this component¾S¿�À4ÁÃÂIÄ9ÅÇÆBÈ�ÅB¿�Æ)É9ÅÇÊ2Â;¿�ÅBË�É�Â;ÄÌÀ�¾ÍÂ/Ä�ÅÎÁ¢ÆKÂ/Å)¿#Ï;ÆBÐ;Ñ�ÆBË9ÒÔÓ�ÕlÖ

i) (i.e. the fuzzy damage parameter for this
component of the material). The statistical entropy of the local strength distribution was calculated in
each case by the formula (1), and the fuzzy damage
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Fig. 3. Fuzzy damage parameter plotted vs. statistical entropy of local strength of material.

parameter by the formula (2). In order to ensure the different entropies for each material and non-×9Ø4Ù¢Ø4Ú9ÛBÜ�ÛBØ�Ý�Þàß�á/Þ�â/ã�á;ä�Ý�â;á;Ø�Ü�ÞgØ�å�â;×9Ûçæ)Ø�Ù5è�Ø4Ü9Û)Ü�â;ÞàáIÜEÛ)éBæ)×¢Ù�éBâ;ÛBã�á;éBê;ë�â;×9Û&åSØ�ê;ê;Ø�ì&áIÜ9Ú5å#Ý9Ü�æBâIá/Ø�Ü¢í&î
i) was used:

ï&ð
i) = (1/Mn)j 

0.2rm.                                                                 (6)

where rm is the number of the considered material, rm = 1, 2, ..., 100, j is the number of the considered
component of this material, j = 1, 2, ..., 20, Mn a constant of norma1ization. The values of Y for each
component were calculated as random numbers between 0 and 1.

Figure 3 shows the fuzzy damage parameter of a material vs. the heterogeneity of the material, which
is characterized by the statistical entropy of distribution of local strengths of the material.

One can see from Fig. 3 that the more heterogeneous the loaded material, the closer the material to
the failed state. The dependence is monotone. One should note that this conclusion was to be expected: it
is known that the firmest materials are homogeneous monocrystals; the large difference in properties of
the filler and matrix in the metal matrix composites can lead to the formation of damage and damage
growth in the matrix.

This result can also be compared with the conclusions from the analysis of Fig. 2: the greater the
heterogeneity of the material, the closer it is to failure.

Consider now the reverse effect: the influence of the approach of a material to failure on its
heterogeneity. Figure 4 shows the statistical entropy of the material strengths plotted vs. the fuzzy
damage parameter. The statistical entropy for each step was calculated with the use of eqs (1), (4) and
(5). One can see that the greater the damage parameter the more heterogeneous the material. Physically, it
means that high-damaged and low-damaged regions as well as cracks and crack systems are formed in
the loaded body during damage evolution and the strengths of different regions of the material become
more different due to different levels of damage in these regions.



632 L. L. MISHNAEVSKY JR and S. SCHMAUDER

Fig. 4. Statistical entropy of local strength of material plotted vs. the fuzzy damage parameter: heterogenization of a material.

One can compare this conclusion with the experimental data on rock fragmentation in indentation
described in ref. [19]. It is known that the strained volume of rock is divided into several zones during
damage accumulation: cracked zone, zone of crushed (powdered) rock, zone of distributed microcracks,
etc. Such formation of differently damaged zones precedes the removal of rock chips in all processes of
mechanical destruction. Thus, the experimental observations of the mechanism of rock fragmentation
confirm the theoretical conclusion that the damage growth leads to the heterogenization of the local
properties of the material. It is of interest to compare this conclusion with the results of Carpinteri and
Yang [20]: the authors have shown, on the basis of the analysis of the evolution of the fractal dimension
of a micro- crack net, that a strained material becomes more heterogeneous during the damage
evolution.

7. STRESS DEPENDENCE OF FUZZY DAMAGE PARAMETER

One can see that the fuzzy damage parameter is not defined as a function of stress in the framework
of this model. It reflects the fact that the transition from non-failed to failed state of a material is taken
here as an uncertain one, and the fuzziness of destruction may be determined by a number of factors of
different nature, both objective and subjective.

In order to establish some interrelations between the parameter and local stress, consider the
definition and sources of fuzziness of fracture in more detail. The fuzziness of the transition of a
material from one state to another may be caused by the fuzziness of the destruction process as such, by
the uncertainty of definitions (may a body be considered as destroyed when it does not bear some load,
or when it is divided by a crack into two parts, or when it becomes powdered?), by the heterogeneity of
the material (a local stress which is failing at one point of a material may be not failing at another point),
or by the graduality of the transition (i.e. the material may seem to be firm, whereas its microcrack
density increases and approaches the critical one).
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If the fuzziness of destruction is considered as an inherent feature of the destruction, the fuzzy
damage parameter can be determined on the basis of subjective appraisals.

The definitions of degrees of destruction of a material can also be introduced artificially: for
example, a volume may be considered as failed (and the membership function Y equal to some critical
value Ycr when the defects in this volume form an infinite cluster and the body is divided into parts.

If the fuzziness of destruction is caused by heterogeneity of the material, it means that the fuzzy set
of the failed state of the material presents an ordinary set for homogeneous materials and the membership
function Y for ideally homogeneous materials can be presented as a step function:

Y0=
crL,L

crL,L

0,

1,
{

<
>

(7)

ñ&ò�óBô�ó
L õ;ö0÷Iø9ù&ú;û�üBý)úþö2÷;ÿ#ù)ö2ö�� L,cr is the critical stress. The formula (7) is based on the above definition of�������	��
����������������
���������


L,cr is measured as a stress at which the body is divided into parts by an as-
formed crack. Then, the step function Y0 is substituted into eq. (2) and the fuzzy damage parameter for
the heterogeneous material can be calculated as well. One should note that for homogeneous materials
eq. (2) reduces to an identity. As a generalization of formula (7), one can take Zhurkov’s condition of
microfracture [21]; in this case, the formula (7) is written in the following way:

                                                             Y0=
L)

���
t0,

)L
 �!

t1,
{ <

>
                                                                    (8)

"$#�%&'%)(+*	,-(�#�%.(	*�/0%)1�2�&3*�4�5�"$#�*	67#8(	#�%)9	:�6;�9�,<(�&'%�,�,-%�=�6%%�1�,-,�:�/>%.?�;9�2�%
L @ A�B CEDGF	H-A�I�J.KL'F	A�F	K�MNPO�MN�Q�J)RTS

the time t, at which the volume fails and which is calculated by the formula.
If the fuzziness of destruction is determined by the graduality of the transition from integrity to the

failed state of the material, the membership function of the material into the fuzzy set of failed states can
be related to temporal characteristics of the destruction process. The strained volume goes from the state
with Y = O to the state with Ycr during a time calculated from the formulas of refs [17, 18]. So, the
membership function Y may be defined as the time required for the material at a given stage of damage
evolution to be failed divided by the summary duration of the process of transition from non-failed to
failed state:

Y = tf(R) /tf(0),                                                                  (9)

where tf(R) is the time to failure of a body with microcrack density R. The formulas for tf(R) are given in
ref.[18].

8. CRACK GROWTH IN HETEROGENEOUS MATERIAL

Consider now the crack propagation. A crack in a loaded body induces a stress field which is
described by a formula like

T U n  V3W X rL 2/ ,                                                                                         (10)Y$Z�[\'[
T is the component of the stress tensor, L is the crack length, r the distance between a point and]	^�_.`a'b`�c�]�d	e�f ]	^�_.b7g�h�i�_.j�_�]�kl_�_�gm]�^�_.i�d	g�_naGb�g�om]�^�_ne�i�bg�_nd�g�k$^�d�`^�]�^�_n`a'b`�c�i	d�_7p<frq3s tub>h�d�v�_gwq3x�g�`]�d�y�gy�q bg�o

n the normal stress acting on the specimen.
As discussed in refs [1, 17,18], the propagation of a crack proceeds as follows: one or several

microcracks are formed in front of the tip of a large crack, stress fields from the crack and microcracks
interact, and then finally some volume in front of the crack tip is failed and the crack is increased by a
new surface formed in this volume. So, the damage evolution and destruction in the small volume in
front of the crack tip determine the crack propagation.

Let us consider a small volume of material in front of the crack. The fuzzy damage parameter in the
area in front of the crack is changed from a value equal to the averaged fuzzy damage parameter
throughout the volume (or simply equal to 0) to the value Y = Ycr.
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Fig. 5. Crack velocity plotted vs. crack length: (I) homogeneous and (2) heterogeneous materials.

Assuming that the fuzziness of destruction is caused by the heterogeneity of the material, one can study
the effect of material heterogeneity on the crack growth. One may also establish an interrelation
between the fuzzy model of damage evolution and the model of crack growth based on the kinetic
theory of microfracture[17]: if one accepts the condition (8) and considers a homogeneous material, one
obtains a crack velocity vs. crack length relation similar to the formula from ref.[17]:

          L)exp(const
dt

dL ∝                                                                  (11)

Consider now the crack growth for both homogeneous and heterogeneous materials, using the
analysis of the influence of the material heterogeneity on the damage evolution given in previous
paragraphs. The crack growth in two materials, with the same parameters as considered above, is
simulated. The value Ycr is taken to be 0.3. The fuzzy damage parameters of each constituent of the
material are considered for some point a distance r from the crack tip, in which the local stress is equal
to some given value. The velocity of crack growth was calculated as the distance r divided by the time
(in time steps) which is necessary for destruction of the volume with linear size r. The following inputz�{|�{.{}'~.���<~z���}������r��}'{��|	{��+z��	�>~7���<�����m����|���~n�}'{�7���������r{�������	~�zm����}3�>{�P�<|�}3~7�<�

n = I, initial length of��������'������ �¡
L,cr = 25000 for the stronger component in both materials and 8340 for the weaker

component. The values of A for these two components are 0.999 and 0.7 for homogeneous and
heterogeneous materials respectively.

The crack growth velocity (in 1/time step) plotted vs. crack length is presented in Fig. 5.
One can see that the crack velocity is much greater in the heterogeneous material than in the

homogeneous one, at the same length of crack.

9. FUZZY AND STATISTICAL CONCEPTS OF FRACTURE

It is of interest also to compare the developed approach with the statistical concepts of strength.
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The fuzzy damage parameter Y characterizes not the possibility of transition from one state to
another (failed state of material), but the present state of the material, which can be inter- mediate
between these two states. It is a fact that the state of the body, which is characterized by its membership
degree into the fuzzy set of corresponding state, is not changed due to duplication, repeating of the same
elements, or increase in size of the body [7]. Yet, the possibility of transition of the body from one state
to another depends on the duplication of elements or the size of the body. The difference between some
results of the probabilistic and reliability models and the developed model lies in this fact. One can see
that the characteristics of the present state of a body (for example Young’s modulus) do not depend on
the duplication, number of elements, or size of the body, whereas the characteristics of the possibility of
change of state under corresponding conditions (for example time to fracture or failing load) are
determined to a larger extent by the number of duplicating elements.

Kauffmann [7] has also mentioned that one can define a probability function on fuzzy sets. Such a
definition was suggested by Shiraishi and Furuta [11]. If the condition of transition of the material from
a non-failed state to a failed one is given not as a sharp boundary (like an equality between applied and
critical loads) but as a membership function of the material into the fuzzy set of the failed state (like
above), the probability of the transition is equal to an expectation of the membership function:

∫
∞

∞−

= ¢¤£�¥¤¦�¢¤£�¥¤§�£re)Prob(Failu

where z is a parameter of the system (elements of the fuzzy set in the discrete case), p(z) is the
probability distribution of z, Y(z) is the membership function of an element z into the fuzzy set of the
failed state.

Such a definition presents a generalization of the concept of probability of failure on uncertain
events.

Then, consider the scale effect on the strength of bodies. In the statistical theory of strength, it is
assumed that a body is failed when the number of defects in it reaches some critical level; the scale effect
(i.e. the fact that the greater a body the less its specific strength) is explained by using the assumption
that the greater the body the more defects it contains[22].

These assumptions cannot be accepted in the fuzzy concept of strength of damaged bodies: as was
said above, the state of a system from independent elements with the same membership function does
not depend on the number of elements connected in parallel [7] (in contrast to the reliability or
probability of failure of this system). So, the scale effect cannot be explained in the framework of the
fuzzy concept of strength in the same way as was done with the statistical theory of strength.

Yet, one can put forward another explanation of the scale effect, which seems to also be justified
physically. As shown above, the fuzzy damage parameter increases with increasing heterogeneity of the
material. For the range of sizes in which the scale effect can be observed, the increase of size means
most often an increase in the heterogeneity of the material. Any material has some heterogeneous
structure at several levels (dislocation structure at microlevel, grain boundaries, grain clusters in
particulate composites, stratified structure in rocks at macrolevel, etc.), and the greater the size of the
specimen used, the more levels of structure influence the strength of the material and form its
heterogeneity[23]. So, the greater the specimen, the greater its heterogeneity Hh and, consequently, the
greater its closeness to failure under loading.

10. CONCLUSIONS

The influence of material heterogeneity (i.e. the extent of the variability of properties of material
components from the averaged material properties) on the damage evolution was studied with use of the
theory of fuzzy sets.

With use of this model, it was shown that:
• the damage growth in heterogeneous materials under cyclic loading proceeds much more intensively

than in homogeneous materials;
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• the greater the statistical entropy of strengths of material components, the less the lifetime of a
product from this material.

It is shown as well that the heterogenization of a loaded material proceeds during damage
accumulation and evolution. The closer the loaded material to fracture, the more heterogeneous it is.
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